PRODUCT OVERVIEW

The economical Hevi-Rail® guide systems offer a lifetime of durability under continuous use. The easily interchangeable bearing components provide even dispersion of forces in the profile rails for longer system life and stability.

Linear Bearings:
• Outer ring made of case-hardened steel
• Handles very high axial and radial loads
• Easily interchangeable components for less down-time

Profile Rails:
• Standard length up to 6 meters
• Sand blasted or lightly oiled
• U-channel or I-channel available

Flange Plates:
• Simple mounting for bearings
• Can be ordered pre-welded to bearing

Ordering example: HVB-054/HVPO

Clamp Flanges:
• Adjustable
• Eliminates need for welding and straightening
• Easily adjustable parallelism

APPLICATIONS
• Telescoping applications (ex. overhead extending jib crane)
• Warehouse handling systems / other material handling
• Custom and standard lift units
• Large Shrink-wrap machinery
• Steel and coil handling
• Large variety of material handling
TECHNICAL SPECIFICATIONS

Linear Bearing for Axial & Radial Loads
Prior to welding, disassemble bearing components. To avoid cracks in welded joints, please use welding electrodes and core weld for unalloyed steel.

Materials:
- **Outer ring** - Case-hardened steel UNI 20 MnCr 5 hardened at 60-2 HRC
- **Inner ring** - Hardened steel En 31 - SAE 52100 hardened at 62-2 HRC
- **Cylindrical rollers** - Flat ground heads are hardened steel, En 31 - SAE 52100, hardened at 59-64 HRc

Bolt tolerance = 0.05 mm

Profile Rails: High quality steel, ASTM A 252 Gr.1, A 252 Gr.2, A 252 Gr.3, A 663 Gr.45-80, A 675 Gr. 45-90. Standard length (1024/1524 steel) of 6 m (19.7ft.). MnCr 5 with maximum contact pressure of 750 MPa (N/mm²). Optional sand blasted and/or lightly oiled. Rails are not hardened but have a Brinell hardness of 145-185. The guide ways in the rails should be lightly greased and not painted.

Clamp Flange: Low carbon steel, adjustable clamp

Flange Plate: Low carbon steel. Special designs available, contact manufacturer.

Seals: Bearings with fixed axial bearing (HVB-053 to HVB-063) - radial bearing has steel labyrinth and side guide roller with rubber seals

Bearing Life Calculations:

\[
L10 = \left(\frac{166}{n} \right) \left(\frac{C}{P} \right)^{1/3} \text{ (Hours)}
\]

- **C** = Dynamic load rating (KN)
- **P** = Automatic dynamic load (KN)
- **n** = Revolutions per minute (rpm)

NOTE: Above calculation formula is for predicting life expectancy with 90% reliability level. Customers shall use their discretion to determine the reduction factor based on the actual operation needs and conditions such as reliability level, load, speed, impact and environments.

Adjusting Axial Bearing (HVB-454 to HVB-463)

1. Remove front screws.
2. Rotate axial bearing shaft
3. Check dimension A
4. Re-install front screws

SYSTEM DESIGN CLEARANCE

1. The overall system clearance should be 1.524 mm to 3.048 mm

\[
\text{Inner Rail Distance} = \text{Saddle Width} + (1.524 \text{ mm to 3.048 mm})
\]

2. Verify that the Axial bearing is aligned parallel to the rail, especially in vertical operations.

CALCULATION OF FMAX FOR CANTILEVERED LOADS

\[
F_{\text{max stat radial}} = \frac{Q \times L}{2 \times A}
\]

- **Q** = Load capacity (N)
- **L** = Load distance to suspension point (mm)
- **P** = Suspension point
- **A** = Bearing distance (mm) recommended 500–1000 mm

Formula: \(F_{\text{max stat radial}} = \frac{Q \times L}{2 \times A} \)

Pzul = 750 N/mm² for all profile rails. Indicated here are \(F_{\text{max stat radial}} \) + axial for each bearing.

Bearing with eccentric adjustable axial bearing (HVB-454 to HVB-463) - Both radial and axial bearings utilize rubber seals (RS type)

Lubrication: Bearings are supplied lubricated with grease grade 3. Bearings from HVB-056 to HVB-063 can be re-lubricated with grease zerk. Adjustable bearings are not available with zerk.

Temperature: Resistant from -10°C to 80°C (14°F to 176°F)
SELECTION GUIDE (when used with Profile Rails HVR-S to HVR-6)

Use the following chart to select the bearings (fixed or adjustable), rails, flange plates and clamp flanges according to your system’s maximum static radial and axial loading. A “system” is defined as a bearing in the corresponding rail. For dimensional and detailed specifications for the system selected, simply refer to the corresponding pages.

<table>
<thead>
<tr>
<th>F (KN) MAX STAT RADIAL</th>
<th>F (KN) MAX STAT AXIAL</th>
<th>COMBINED BEARING AXIAL BEARING FIXED</th>
<th>COMBINED BEARING AXIAL BEARING ADJUSTABLE</th>
<th>PROFILE RAILS</th>
<th>CLAMP FLANGE</th>
<th>FLANGE PLATE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>1.7</td>
<td>HVB-053</td>
<td>–</td>
<td>HVR-S</td>
<td>–</td>
<td>HVPS-1</td>
<td>246</td>
</tr>
<tr>
<td>7.2</td>
<td>2.4</td>
<td>HVB-054</td>
<td>HVBEA-454</td>
<td>HVR-0</td>
<td>HVC-0</td>
<td>HVP0-1</td>
<td>244</td>
</tr>
<tr>
<td>8.6</td>
<td>2.8</td>
<td>HVB-055</td>
<td>HVBEA-455</td>
<td>HVR-1, HVRI-07</td>
<td>HVC-1</td>
<td>HVP1-1</td>
<td>248</td>
</tr>
<tr>
<td>8.9</td>
<td>3.0</td>
<td>HVB-056</td>
<td>HVBEA-456</td>
<td>HVR-2</td>
<td>HVC-2</td>
<td>HVP2-1</td>
<td>249</td>
</tr>
<tr>
<td>8.9</td>
<td>3.0</td>
<td>HVB-057</td>
<td>HVBEA-457</td>
<td>HVRI-08</td>
<td>–</td>
<td>HVP2-1</td>
<td>250</td>
</tr>
<tr>
<td>15.6</td>
<td>5.2</td>
<td>HVB-058</td>
<td>HVBEA-458</td>
<td>HVR-3, HVRI-09</td>
<td>HVC-3</td>
<td>HVP3-1</td>
<td>251</td>
</tr>
<tr>
<td>15.5</td>
<td>5.1</td>
<td>HVB-059</td>
<td>HVBEA-459</td>
<td>HVRI-10</td>
<td>–</td>
<td>–</td>
<td>252</td>
</tr>
<tr>
<td>16.5</td>
<td>5.5</td>
<td>HVB-060</td>
<td>HVBEA-460</td>
<td>HVRI-11</td>
<td>–</td>
<td>–</td>
<td>252</td>
</tr>
<tr>
<td>16.5</td>
<td>5.5</td>
<td>HVB-061</td>
<td>HVBEA-461</td>
<td>HVR-4</td>
<td>HVC-4</td>
<td>HVP4-1</td>
<td>253</td>
</tr>
<tr>
<td>23.5</td>
<td>7.8</td>
<td>HVB-062</td>
<td>–</td>
<td>HVR-5</td>
<td>–</td>
<td>HVP4-1</td>
<td>254</td>
</tr>
<tr>
<td>41.1</td>
<td>13.7</td>
<td>HVB-063</td>
<td>HVBEA-463</td>
<td>HVR-6</td>
<td>–</td>
<td>HVP6-1</td>
<td>255</td>
</tr>
</tbody>
</table>

NOTE: For cantilevered loads, static verification calculations can be found on page 244. *All dimensions in mm.

MOUNTING CONFIGURATIONS

HANDLING UNITS

ADJUSTABLE CLAMP SYSTEM

LIFTING UNITS

HORIZONTAL TELESCOPE
Hevi-Rail® Linear Bearing System
0.6 US Ton-Force

AXIAL BEARING - FIXED HVB-053

WEIGHT = 0.36 Kg

BEARING RADIAL LOAD
Max. dynamic load = 24 KN
Max. static load = 33 KN

BEARING AXIAL LOAD
Max. dynamic load = 10 KN
Max. static load = 14 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL U-CHANNEL HVR-S

WEIGHT = 5.3 Kg/m

MOMENT OF INERTIA
Ix = 5.2 cm^4, Iy = 38.8 cm^4

MOMENT OF RESISTANCE
Wx = 2.50 cm^3, Wy = 11.90 cm^3

RADIUS OF INERTIA
ix = 0.80 cm, iy = 2.40 cm

DIST. TO CENTER OF GRAVITY
ey = 0.94 cm, ex = 32.50 cm

FLANGE PLATE HVPS-1

WEIGHT
= 0.36 Kg

M8 x 1.25 thru

MOMENT OF INERTIA
Ix = 5.2 cm^4, Iy = 38.8 cm^4

MOMENT OF RESISTANCE
Wx = 2.50 cm^3, Wy = 11.90 cm^3

RADIUS OF INERTIA
ix = 0.80 cm, iy = 2.40 cm

DIST. TO CENTER OF GRAVITY
ey = 0.94 cm, ex = 32.50 cm

WHEN USED WITH SHOWN PROFILE RAILS
System Max. Static Radial Load = 5.2 KN / 0.6 US Ton-Force
System Max. Static Axial Load = 1.7 KN / 0.2 US Ton-Force
AXIAL BEARING - FIXED

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight (Kg)</th>
<th>Bearing Radial Load</th>
<th>Bearing Axial Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVB-054</td>
<td>0.53</td>
<td>Max. dynamic load = 39 KN</td>
<td>Max. static load = 65 KN</td>
</tr>
</tbody>
</table>

ECCENTRIC ADJUSTABLE

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight (Kg)</th>
<th>Bearing Radial Load</th>
<th>Bearing Axial Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVBEA-454</td>
<td>0.53</td>
<td>Max. dynamic load = 39 KN</td>
<td>Max. static load = 65 KN</td>
</tr>
</tbody>
</table>

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL U-CHANNEL

<table>
<thead>
<tr>
<th>Model</th>
<th>Weight (Kg/m)</th>
<th>Ix</th>
<th>Iy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVR-0</td>
<td>10.5</td>
<td>15.35 cm²</td>
<td>137.05 cm²</td>
</tr>
</tbody>
</table>

RADIUS OF INERTIA

<table>
<thead>
<tr>
<th>Model</th>
<th>Ix</th>
<th>Iy</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVR-0</td>
<td>1.07 cm²</td>
<td>3.20 cm²</td>
</tr>
</tbody>
</table>

DIST. TO CENTER OF GRAVITY

<table>
<thead>
<tr>
<th>Model</th>
<th>ey</th>
<th>ex</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVR-0</td>
<td>1.29 cm</td>
<td>4.33 cm</td>
</tr>
</tbody>
</table>

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

FLANGE PLATE

<table>
<thead>
<tr>
<th>Model</th>
<th>M10 x 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVP0-1</td>
<td>11</td>
</tr>
</tbody>
</table>

CLAMP FLANGE

<table>
<thead>
<tr>
<th>Model</th>
<th>M10 x 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVC-0</td>
<td>11</td>
</tr>
</tbody>
</table>

* “h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-054 or HVBEA-454.

When used with shown profile rails

System Max. Static Radial Load = 7.2 KN / 0.8 US Ton-Force
System Max. Static Axial Load = 2.4 KN / 0.3 US Ton-Force
Hevi-Rail® Linear Bearing Systems
0.9 US Ton-Force

AXIAL BEARING - FIXED

HVB-055

- **WEIGHT** = 0.80 Kg
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 18 KN
 - Max. static load = 26 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL U-CHANNEL

HVR-1

- **WEIGHT** = 14.8 Kg/m
- **MOMENT OF INERTIA**
 - Ix = 27.29 cm^4, Iy = 273.50 cm^4
- **DIST. TO CENTER OF GRAVITY**
 - ey = 1.50 cm, ex = 5.16 cm
- **RADIUS OF INERTIA**
 - ix = 1.20 cm, iy = 3.81 cm
- **MOMENT OF RESISTANCE**
 - Wxmin = 10.91 cm^3
 - Wxmax = 18.20 cm^3
 - Wy = 53.00 cm^3

FLANGE PLATE

HVP1-1

“h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-055 or HVBEA-455.

ECCENTRIC ADJUSTABLE

HVBEA-455

- **WEIGHT** = 0.80 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 56 KN
 - Max. static load = 93 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL I-CHANNEL

HVRI-07

- **WEIGHT** = 19.4 Kg/m
- **MOMENT OF INERTIA**
 - Ix = 344.29 cm^4, Iy = 57.63 cm^4
- **DIST. TO CENTER OF GRAVITY**
 - ey = 4.90 cm, ex = 3.25 cm
- **RADIUS OF INERTIA**
 - ix = 3.73 cm, iy = 1.52 cm
- **MOMENT OF RESISTANCE**
 - Wxmin = 10.91 cm^3
 - Wxmax = 18.20 cm^3
 - Wy = 53.00 cm^3

CLAMP FLANGE

HVC-1

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

WHEN USED WITH SHOWN PROFILE RAILS

- **System Max. Static Radial Load** = 8.6 KN / 0.9 US Ton-Force
- **System Max. Static Axial Load** = 2.8 KN / 0.3 US Ton-Force
Hevi-Rail® Linear Bearing Systems

1.0 US Ton-Force

AXIAL BEARING - FIXED

HVB-056

WEIGHT = 1.00 Kg
BEARING RADIAL LOAD
Max. dynamic load = 59 KN
Max. static load = 102 KN
BEARING AXIAL LOAD
Max. dynamic load = 20 KN
Max. static load = 32 KN
NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

ECCENTRIC ADJUSTABLE

HVBEA-456

WEIGHT = 1.00 Kg
BEARING RADIAL LOAD
Max. dynamic load = 59 KN
Max. static load = 102 KN
BEARING AXIAL LOAD
Max. dynamic load = 23 KN
Max. static load = 36 KN
NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL U-CHANNEL

HVR-2

WEIGHT = 20.9 Kg/m
RADIUS OF INERTIA
ix = 1.19 cm, iy = 4.30 cm
MOMENT OF RESISTANCE
Wxmin = 14.83 cm³, Wxmax = 24.58 cm³, Wy = 81.38 cm³
DIST. TO CENTER OF GRAVITY
ey = 1.54 cm, ex = 6.07 cm

FLANGE PLATE

HVP2-1

CLAMP FLANGE

HVC-2

“h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-056 or HVBEA-456.
Hevi-Rail® 1.0 US Ton-Force

AXIAL BEARING - FIXED

<table>
<thead>
<tr>
<th>HVB-057</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT = 0.90 Kg</td>
</tr>
<tr>
<td>BEARING RADIAL LOAD</td>
</tr>
<tr>
<td>Max. dynamic load = 59 KN</td>
</tr>
<tr>
<td>Max. static load = 102 KN</td>
</tr>
<tr>
<td>BEARING AXIAL LOAD</td>
</tr>
<tr>
<td>Max. dynamic load = 20 KN</td>
</tr>
<tr>
<td>Max. static load = 32 KN</td>
</tr>
<tr>
<td>NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.</td>
</tr>
</tbody>
</table>

PROFILE RAIL I-CHANNEL

<table>
<thead>
<tr>
<th>HVRI-08</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT = 25.3 Kg/m</td>
</tr>
<tr>
<td>MOMENT OF INERTIA</td>
</tr>
<tr>
<td>I_x = 597.54 cm^4, I_y = 76.79 cm^4</td>
</tr>
<tr>
<td>DIST. TO CENTER OF GRAVITY</td>
</tr>
<tr>
<td>e_y = 5.70 cm, e_x = 3.30 cm</td>
</tr>
<tr>
<td>RADIUS OF INERTIA</td>
</tr>
<tr>
<td>i_x = 4.24 cm, i_y = 1.54 cm</td>
</tr>
<tr>
<td>MOMENT OF RESISTANCE</td>
</tr>
<tr>
<td>W_x = 104.92 cm^3, W_y = 23.27 cm^3</td>
</tr>
</tbody>
</table>

FLANGE PLATE

<table>
<thead>
<tr>
<th>HVP2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHT = 0.90 Kg</td>
</tr>
<tr>
<td>BEARING RADIAL LOAD</td>
</tr>
<tr>
<td>Max. dynamic load = 59 KN</td>
</tr>
<tr>
<td>Max. static load = 102 KN</td>
</tr>
<tr>
<td>BEARING AXIAL LOAD</td>
</tr>
<tr>
<td>Max. dynamic load = 20 KN</td>
</tr>
<tr>
<td>Max. static load = 36 KN</td>
</tr>
<tr>
<td>NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.</td>
</tr>
</tbody>
</table>

“h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-057 or HVBEA-457.
Hevi-Rail® Linear Bearing Systems

1.7 US Ton-Force

Profile Rail U-Channel: HVR-3

- **Weight:** 28.6 Kg/m
- **Radius of Inertia:**
 - $I_x = 89.47 \text{ cm}^4$, $I_y = 965.23 \text{ cm}^4$
- **Moment of Resistance:**
 - $W_{x,\text{min}} = 27.03 \text{ cm}^3$
 - $W_{x,\text{max}} = 44.96 \text{ cm}^3$
 - $W_y = 127.80 \text{ cm}^3$
- **Dist. to Center of Gravity:**
 - $e_y = 1.99 \text{ cm}$, $e_x = 6.77 \text{ cm}$

Profile Rail I-Channel: HVRI-09

- **Weight:** 34.1 Kg/m
- **Radius of Inertia:**
 - $I_x = 1037.22 \text{ cm}^4$, $I_y = 161.89 \text{ cm}^4$
- **Moment of Resistance:**
 - $W_x = 160.07 \text{ cm}^3$
 - $W_y = 127.80 \text{ cm}^3$
- **Dist. to Center of Gravity:**
 - $e_y = 6.48 \text{ cm}$, $e_x = 4.05 \text{ cm}$

Clamping Flange: HVC-3

- **Weight:** 1.62 Kg
- **Radius of Inertia:**
 - $I_x = 4.89 \text{ cm}$, $I_y = 1.93 \text{ cm}$
- **Moment of Resistance:**
 - $W_{x,\text{min}} = 27.03 \text{ cm}^3$
 - $W_{x,\text{max}} = 44.96 \text{ cm}^3$
 - $W_y = 127.80 \text{ cm}^3$

Axial Bearing - Fixed: HVB-058

- **Weight:** 1.62 Kg
- **Radius of Inertia:**
 - $I_x = 1.57 \text{ cm}$, $I_y = 4.87 \text{ cm}$
- **Moment of Resistance:**
 - $W_{x,\text{min}} = 27.03 \text{ cm}^3$
 - $W_{x,\text{max}} = 44.96 \text{ cm}^3$
 - $W_y = 127.80 \text{ cm}^3$

Eccentric Adjustable: HVBEA-458

- **Weight:** 1.62 Kg
- **Radius of Inertia:**
 - $I_x = 1.57 \text{ cm}$, $I_y = 4.87 \text{ cm}$
- **Moment of Resistance:**
 - $W_{x,\text{min}} = 27.03 \text{ cm}^3$
 - $W_{x,\text{max}} = 44.96 \text{ cm}^3$
 - $W_y = 127.80 \text{ cm}^3$

“h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-058 or HVBEA-458.

When used with shown profile rails:

- System Max. Static Radial Load = 15.6 KN / 1.7 US Ton-Force
- System Max. Static Axial Load = 5.2 KN / 0.6 US Ton-Force
Hevi-Rail® Linear Bearing Systems

1.8 US Ton-Force

AXIAL BEARING - FIXED

HVB-059

- **WEIGHT**: 1.80 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 92 KN
 - Max. static load = 153 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 32 KN
 - Max. static load = 50 KN

WEIGHT: 1.74 Kg

- **BEARING RADIAL LOAD**
 - Max. dynamic load = 91 KN
 - Max. static load = 140 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 32 KN
 - Max. static load = 50 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

WHEN USED WITH SHOWN PROFILE RAILS

- **System Max. Static Radial Load**: 15.5 KN / 1.7 US Ton-Force
- **System Max. Static Axial Load**: 5.1 KN / 0.6 US Ton-Force

ECCENTRIC ADJUSTABLE

HVBEA-459

- **WEIGHT**: 2.30 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 100 KN
 - Max. static load = 174 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 39 KN
 - Max. static load = 66 KN

WEIGHT: 2.27 Kg

- **BEARING RADIAL LOAD**
 - Max. dynamic load = 100 KN
 - Max. static load = 174 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 32 KN
 - Max. static load = 50 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

WHEN USED WITH SHOWN PROFILE RAILS

- **System Max. Static Radial Load**: 16.5 KN / 1.8 US Ton-Force
- **System Max. Static Axial Load**: 5.5 KN / 0.6 US Ton-Force

PROFILE RAIL I-COLUMN

HVRI-10

- **WEIGHT**: 30.9 Kg/m
- **MOMENT OF INERTIA**
 - Ix = 1078.01 cm^4, Iy = 104.38 cm^4
- **DIST. TO CENTER OF GRAVITY**
 - ey = 6.99 cm, ex = 3.49 cm
- **MOMENT OF RESISTANCE**
 - Wx = 154.33 cm^3, Wy = 29.89 cm^3

WEIGHT: 40.5 Kg/m

- **MOMENT OF INERTIA**
 - Ix = 1670.08 cm^4, Iy = 184.52 cm^4
- **DIST. TO CENTER OF GRAVITY**
 - ey = 7.62 cm, ex = 4.15 cm
- **RADIUS OF INERTIA**
 - ix = 5.69 cm, iy = 1.91 cm
- **MOMENT OF RESISTANCE**
 - Wx = 219.17 cm^3, Wy = 44.46 cm^3
AXIAL BEARING - FIXED

HVB-061

- **WEIGHT** = 2.82 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 100 KN
 - Max. static load = 174 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 39 KN
 - Max. static load = 66 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

ECCENTRIC ADJUSTABLE

HVBEA-461

- **WEIGHT** = 2.82 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 100 KN
 - Max. static load = 174 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 32 KN
 - Max. static load = 50 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL U-CHANNEL

HVR-4

- **WEIGHT** = 35.9 Kg/m
- **MOMENT OF INERTIA**
 - \(I_x = 150.98 \text{ cm}^4\)
 - \(I_y = 1,494.32 \text{ cm}^4\)
- **DIST. TO CENTER OF GRAVITY**
 - \(e_y = 2.25 \text{ cm}, e_x = 7.86 \text{ cm}\)
- **RADIUS OF INERTIA**
 - \(i_x = 1.82 \text{ cm}, i_y = 5.72 \text{ cm}\)
- **MOMENT OF RESISTANCE**
 - \(W_{x_{\text{min}}} = 39.00 \text{ cm}^3\)
 - \(W_{x_{\text{max}}} = 67.13 \text{ cm}^3\)
 - \(W_y = 190.12 \text{ cm}^3\)

FLANGE PLATE

HVP4-1

- **CLAMP FLANGE**

HVC-4

“h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-061 or HVBEA-461.

WHEN USED WITH SHOWN PROFILE RAILS

- System Max. Static Radial Load = 16.5 KN / 1.8 US Ton-Force
- System Max. Static Axial Load = 5.5 KN / 0.6 US Ton-Force
<table>
<thead>
<tr>
<th>AXIAL BEARING - FIXED</th>
<th>HEVI-RAIL®</th>
<th>ECCENTRIC ADJUSTABLE</th>
<th>HEVI-RAIL®</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVB-062</td>
<td></td>
<td>HVBEA-462</td>
<td></td>
</tr>
<tr>
<td>WEIGHT = 4.50 Kg</td>
<td></td>
<td>WEIGHT = 3.90 Kg</td>
<td></td>
</tr>
<tr>
<td>BEARING RADIAL LOAD</td>
<td></td>
<td>BEARING RADIAL LOAD</td>
<td></td>
</tr>
<tr>
<td>Max. dynamic load = 135 KN</td>
<td></td>
<td>Max. dynamic load = 135 KN</td>
<td></td>
</tr>
<tr>
<td>Max. static load = 242 KN</td>
<td></td>
<td>Max. static load = 242 KN</td>
<td></td>
</tr>
<tr>
<td>BEARING AXIAL LOAD</td>
<td></td>
<td>BEARING AXIAL LOAD</td>
<td></td>
</tr>
<tr>
<td>Max. dynamic load = 47 KN</td>
<td></td>
<td>Max. dynamic load = 41 KN</td>
<td></td>
</tr>
<tr>
<td>Max. static load = 90 KN</td>
<td></td>
<td>Max. static load = 72 KN</td>
<td></td>
</tr>
<tr>
<td>NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.</td>
<td></td>
<td>NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.</td>
<td></td>
</tr>
</tbody>
</table>

PROFILE RAIL U-CHANNEL

HVB-062

- **WEIGHT** = 4.2 Kg
- **MOMENT OF INERTIA**
 - $I_x = 205.84 \text{ cm}^4$
 - $I_y = 2,185.32 \text{ cm}^4$
- **DIST. TO CENTER OF GRAVITY**
 - $e_y = 2.37 \text{ cm}$, $e_x = 8.75 \text{ cm}$
- **RADIUS OF INERTIA**
 - $i_x = 1.94 \text{ cm}$, $i_y = 6.32 \text{ cm}$
- **MOMENT OF RESISTANCE**
 - $W_{x_{\text{min}}} = 48.42 \text{ cm}^3$
 - $W_{x_{\text{max}}} = 86.89 \text{ cm}^3$
 - $W_y = 249.75 \text{ cm}^3$

FLANGE PLATE

HVP4-1

- **WEIGHT** = 4.50 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 135 KN
 - Max. static load = 242 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 47 KN
 - Max. static load = 90 KN

“h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-062 or HVBEA-462.
Hevi-Rail® Linear Bearing Systems

4.6 US Ton-Force

AXIAL BEARING - FIXED

HVB-063

- **WEIGHT**: 6.52 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 183 KN
 - Max. static load = 353 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 82 KN
 - Max. static load = 131 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

ECCENTRIC ADJUSTABLE

HVBEA-463

- **WEIGHT**: 6.50 Kg
- **BEARING RADIAL LOAD**
 - Max. dynamic load = 183 KN
 - Max. static load = 353 KN
- **BEARING AXIAL LOAD**
 - Max. dynamic load = 41 KN
 - Max. static load = 72 KN

NOTE: Above loads achievable when used with a hardened rail 55 RC minimum 2.54mm deep.

PROFILE RAIL

HVR-6

- **WEIGHT**: 52.3 Kg/m
- **MOMENT OF INERTIA**
 - \(I_x = 269.52 \text{ cm}^4 \)
 - \(I_y = 3,423.08 \text{ cm}^4 \)
- **DIST. TO CENTER OF GRAVITY**
 - \(e_y = 2.40 \text{ cm} \)
 - \(e_x = 10.08 \text{ cm} \)

- **RADIUS OF INERTIA**
 - \(i_x = 2.01 \text{ cm} \)
 - \(i_y = 7.17 \text{ cm} \)

- **MOMENT OF RESISTANCE**
 - \(W_{x\text{min}} = 57.15 \text{ cm}^3 \)
 - \(W_{x\text{max}} = 112.11 \text{ cm}^3 \)
 - \(W_y = 339.76 \text{ cm}^3 \)

FLANGE PLATE

HVP6-1

- **Note**: “h” refers to the depth of the axial bearing, so “h” depends on choice of HVB-063 or HVBEA-463.

WHEN USED WITH SHOWN PROFILE RAILS

System Max. Static Radial Load = 41.1 KN / 4.6 US Ton-Force
System Max. Static Axial Load = 13.7 KN / 1.5 US Ton-Force